Controllability for variational inequalities of parabolic type with nonlinear perturbation.
In this paper, we study the controllability of nonlinear fractional integrodifferential systems with implicit fractional derivative. Sufficient conditions for controllability results are obtained through the notion of the measure of noncompactness of a set and Darbo's fixed point theorem. Examples are included to verify the result.
In this article, we consider finite dimensional dynamical control systems described by nonlinear impulsive Ito type stochastic integrodifferential equations. Necessary and sufficient conditions for complete controllability of nonlinear impulsive stochastic systems are formulated and proved under the natural assumption that the corresponding linear system is appropriately controllable. A fixed point approach is employed for achieving the required result.
This paper is concerned with the problem of controllability of semi-linear stochastic systems with time varying multiple delays in control in finite dimensional spaces. Sufficient conditions are established for the relative controllability of semilinear stochastic systems by using the Banach fixed point theorem. A numerical example is given to illustrate the application of the theoretical results. Some important comments are also presented on existing results for the stochastic controllability of...
We study a classification of κ-times integrated semigroups (for κ > 0) by their (uniform) rate of convergence at the origin: as t → 0 (0 ≤ α ≤ κ). By an improved generation theorem we characterize this behaviour by Hille-Yosida type estimates. Then we consider integrated semigroups with holomorphic extension and characterize their convergence at the origin, as well as the existence of boundary values, by estimates of the associated holomorphic semigroup. Various examples illustrate these results....
We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions...
We provide a semilocal convergence analysis for Newton-type methods using our idea of recurrent functions in a Banach space setting. We use Zabrejko-Zinčenko conditions. In particular, we show that the convergence domains given before can be extended under the same computational cost. Numerical examples are also provided to show that we can solve equations in cases not covered before.
We consider the second order initial value problem in a Hilbert space, which is a singular perturbation of a first order initial value problem. The difference of the solution and its singular limit is estimated in terms of the small parameter The coefficients are commuting self-adjoint operators and the estimates hold also for the semilinear problem.