On measures of noncompactness in topological vector spaces
Mesh-independent convergence of Newton-type methods for the solution of nonlinear partial differential equations is discussed. First, under certain local smoothness assumptions, it is shown that by properly relating the mesh parameters and for a coarse and a fine discretization mesh, it suffices to compute the solution of the nonlinear equation on the coarse mesh and subsequently correct it once using the linearized (Newton) equation on the fine mesh. In this way the iteration error will be...
In this paper, we minimize the map Fp (X)= ||S−(AX−XB)||Pp , where the pair (A, B) has the property (F P )Cp , S ∈ Cp , X varies such that AX − XB ∈ Cp and Cp denotes the von Neumann-Schatten class.
The solvability of a class of monotone nonlinear variational inequality problems in a reflexive Banach space setting is presented.
We study the mappings of monotone type in Orlicz-Sobolev spaces. We introduce a new class as a generalization of and extend the definition of quasimonotone map. We also prove existence results for equations involving monotone-like mappings.
We present an existence theorem for monotonic solutions of a quadratic integral equation of Abel type in . The famous Chandrasekhar’s integral equation is considered as a special case. The concept of measure of noncompactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof.
The aim of this paper is to obtain monotonic solutions of an integral equation of Urysohn-Stieltjes type in . Existence will be established with the aid of the measure of noncompactness.
Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.In this paper the multi-dimensional analog of the Gillis-Weiss random walk model is studied. The convergence of this random walk to a fractional diffusion process governed by a symmetric operator defined as a hypersingular integral or the inverse of the Riesz potential in the sense of distributions is proved.* Supported by German Academic Exchange Service (DAAD).
This paper introduces the class of Cohen p-nuclear m-linear operators between Banach spaces. A characterization in terms of Pietsch's domination theorem is proved. The interpretation in terms of factorization gives a factorization theorem similar to Kwapień's factorization theorem for dominated linear operators. Connections with the theory of absolutely summing m-linear operators are established. As a consequence of our results, we show that every Cohen p-nuclear (1 < p ≤ ∞ ) m-linear mapping...
The space of multilinear mappings of nuclear type (s;r1,...,rn) between Banach spaces is considered, some of its properties are described (including the relationship with tensor products) and its topological dual is characterized as a Banach space of absolutely summing mappings.