New hybrid iterative schemes for an infinite family of nonexpansive mappings in Hilbert spaces.
In this paper we study -EP matrices, as a generalization of EP-matrices in indefinite inner product spaces, with respect to indefinite matrix product. We give some properties concerning EP and -EP matrices and find connection between them. Also, we present some results for reverse order law for Moore-Penrose inverse in indefinite setting. Finally, we deal with the star partial ordering and improve some results given in the “EP matrices in indefinite inner product spaces” (2012), by relaxing some...
The paper deals with the existence of periodic solutions for a kind of non-autonomous time-delay Rayleigh equation. With the continuation theorem of the coincidence degree and a priori estimates, some new results on the existence of periodic solutions for this kind of Rayleigh equation are established.
We present a general spectral decomposition technique for bounded solutions to inhomogeneous linear periodic evolution equations of the form ẋ = A(t)x + f(t) (*), with f having precompact range, which is then applied to find new spectral criteria for the existence of almost periodic solutions with specific spectral properties in the resonant case where may intersect the spectrum of the monodromy operator P of (*) (here sp(f) denotes the Carleman spectrum of f). We show that if (*) has a bounded...
We provide new sufficient conditions for the convergence of the secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses “Lipschitz-type” and center-“Lipschitz-type” instead of just “Lipschitz-type” conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than the earlier ones and under our convergence hypotheses we can cover cases where the earlier conditions are violated.
We present a local and a semilocal analysis for Newton-like methods in a Banach space. Our hypotheses on the operators involved are very general. It turns out that by choosing special cases for the "majorizing" functions we obtain all previous results in the literature, but not vice versa. Since our results give a deeper insight into the structure of the functions involved, we can obtain semilocal convergence under weaker conditions and in the case of local convergence a larger convergence radius....
A new variational principle and duality for the problem Lu = ∇G(u) are provided, where L is a positive definite and selfadjoint operator and ∇G is a continuous gradient mapping such that G satisfies superquadratic growth conditions. The results obtained may be applied to Dirichlet problems for both ordinary and partial differential equations.
In 1959, Nikaidô established a remarkable coincidence theorem in a compact Hausdorff topological space, to generalize and to give a unified treatment to the results of Gale regarding the existence of economic equilibrium and the theorems in game problems. The main purpose of the present paper is to deduce several generalized key results based on this very powerful result, together with some KKM property. Indeed, we shall simplify and reformulate a few coincidence theorems on acyclic multifunctions,...