The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 961 – 980 of 1124

Showing per page

Submultiplicative functions and operator inequalities

Hermann König, Vitali Milman (2014)

Studia Mathematica

Let T: C¹(ℝ) → C(ℝ) be an operator satisfying the “chain rule inequality” T(f∘g) ≤ (Tf)∘g⋅Tg, f,g ∈ C¹(ℝ). Imposing a weak continuity and a non-degeneracy condition on T, we determine the form of all maps T satisfying this inequality together with T(-Id)(0) < 0. They have the form Tf = ⎧ ( H f / H ) f ' p , f’ ≥ 0, ⎨ ⎩ - A ( H f / H ) | f ' | p , f’ < 0, with p > 0, H ∈ C(ℝ), A ≥ 1. For A = 1, these are just the solutions of the chain rule operator equation. To prove this, we characterize the submultiplicative, measurable functions...

Subnormal operators, cyclic vectors and reductivity

Béla Nagy (2013)

Studia Mathematica

Two characterizations of the reductivity of a cyclic normal operator in Hilbert space are proved: the equality of the sets of cyclic and *-cyclic vectors, and the equality L²(μ) = P²(μ) for every measure μ equivalent to the scalar-valued spectral measure of the operator. A cyclic subnormal operator is reductive if and only if the first condition is satisfied. Several consequences are also presented.

Subnormal operators of finite type I. Xia's model and real algebraic curves in C2.

Dmitry V. Yakubovich (1998)

Revista Matemática Iberoamericana

Xia proves in [9] that a pure subnormal operator S is completely determined by its self-commutator C = S*S - SS*, restricted to the closure M of its range and the operator Λ = (S*|M)*. In [9], [10], [11] he constructs a model for S that involves this two operators and the so-called mosaic, which is a projection-valued function, analytic outside the spectrum of the minimal normal extension of S. He finds all pure subnormals S with rank C = 2. We will give a complete description of pairs of matrices...

Subnormal operators of finite type II. Structure theorems.

Dmitry V. Yakubovich (1998)

Revista Matemática Iberoamericana

This paper concerns pure subnormal operators with finite rank self-commutator, which we call subnormal operators of finite type. We analyze Xia's theory of these operators [21]-[23] and give its alternative exposition. Our exposition is based on the explicit use of a certain algebraic curve in C2, which we call the discriminant curve of a subnormal operator, and the approach of dual analytic similarity models of [26]. We give a complete structure result for subnormal operators of finite type, which...

Subnormality and cyclicity

Franciszek Hugon Szafraniec (2005)

Banach Center Publications

For an unbounded operator S the question whether its subnormality can be built up from that of every S f , the restriction of S to a cyclic space generated by f in the domain of S, is analyzed. Though the question at large has been left open some partial results are presented and a possible way to prove it is suggested as well.

Subsets of nonempty joint spectrum in topological algebras

Antoni Wawrzyńczyk (2018)

Mathematica Bohemica

We give a necessary and a sufficient condition for a subset S of a locally convex Waelbroeck algebra 𝒜 to have a non-void left joint spectrum σ l ( S ) . In particular, for a Lie subalgebra L 𝒜 we have σ l ( L ) if and only if [ L , L ] generates in 𝒜 a proper left ideal. We also obtain a version of the spectral mapping formula for a modified left joint spectrum. Analogous theorems for the right joint spectrum and the Harte spectrum are also valid.

Subspaces with a common complement in a Banach space

Dimosthenis Drivaliaris, Nikos Yannakakis (2007)

Studia Mathematica

We study the problem of the existence of a common algebraic complement for a pair of closed subspaces of a Banach space. We prove the following two characterizations: (1) The pairs of subspaces of a Banach space with a common complement coincide with those pairs which are isomorphic to a pair of graphs of bounded linear operators between two other Banach spaces. (2) The pairs of subspaces of a Banach space X with a common complement coincide with those pairs for which there exists an involution...

Currently displaying 961 – 980 of 1124