An iterative approach to a constrained least squares problem.
2000 Mathematics Subject Classification: 47H04, 65K10.In this article, we study a general iterative procedure of the following form 0 ∈ f(xk)+F(xk+1), where f is a function and F is a set valued map acting from a Banach space X to a linear normed space Y, for solving generalized equations in the nonsmooth framework. We prove that this method is locally Q-linearly convergent to x* a solution of the generalized equation 0 ∈ f(x)+F(x) if the set-valued map [f(x*)+g(·)−g(x*)+F(·)]−1 is Aubin continuous...
For 1 ≤ q < ∞, let denote the Banach algebra consisting of the bounded complex-valued functions on the unit circle having uniformly bounded q-variation on the dyadic arcs. We describe a broad class ℐ of UMD spaces such that whenever X ∈ ℐ, the sequence space ℓ²(ℤ,X) admits the classes as Fourier multipliers, for an appropriate range of values of q > 1 (the range of q depending on X). This multiplier result expands the vector-valued Marcinkiewicz Multiplier Theorem in the direction q >...
We consider an embedding of the group of invertible transformations of [0,1] into the algebra of bounded linear operators on an Orlicz space. We show that if this embedding preserves the group action then the Orlicz space is an -space for some 1 ≤ p < ∞.