An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise
We survey recent developments in operator theory and moment problems, beginning with the study of quadratic hyponormality for unilateral weighted shifts, its connections with truncated Hamburger, Stieltjes, Hausdorff and Toeplitz moment problems, and the subsequent proof that polynomially hyponormal operators need not be subnormal. We present a general elementary approach to truncated moment problems in one or several real or complex variables, based on matrix positivity and extension. Together...
This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.
In this paper a class of general type α-admissible contraction mappings on quasi-b-metric-like spaces are defined. Existence and uniqueness of fixed points for this class of mappings is discussed and the results are applied to Ulam stability problems. Various consequences of the main results are obtained and illustrative examples are presented.
We construct a new lipschitzian retraction from the closed unit ball of the Banach space l₁ onto its boundary, with Lipschitz constant 8.