Asymptotic properties of mild solutions of nonautonomous evolution equations with applications to retarded differential equations.
We study the asymptotic behavior of the solutions of a differential equation with unbounded delay. The results presented are based on the first Lyapunov method, which is often used to construct solutions of ordinary differential equations in the form of power series. This technique cannot be applied to delayed equations and hence we express the solution as an asymptotic expansion. The existence of a solution is proved by the retract method.
Let G be a finite connected graph on two or more vertices, and the distance-k graph of the N-fold Cartesian power of G. For a fixed k ≥ 1, we obtain explicitly the large N limit of the spectral distribution (the eigenvalue distribution of the adjacency matrix) of . The limit distribution is described in terms of the Hermite polynomials. The proof is based on asymptotic combinatorics along with quantum probability theory.
A new theorem on asymptotic stability and sweeping of substochastic semigroups is proved, and applied semigroups generated by birth-death processes.
Asymptotic stability of the zero solution for stochastic jump parameter systems of differential equations given by , where is a finite-valued Markov process and w(t) is a standard Wiener process, is considered. It is proved that the existence of a unique positive solution of the system of coupled Lyapunov matrix equations derived in the paper is a necessary asymptotic stability condition.
We study the asymptotic behaviour of solutions of a transport equation. We give some sufficient conditions for the complete mixing property of the Markov semigroup generated by this equation.
This note presents a theorem which gives an answer to a conjecture which appears in the book Matrix Norms and Their Applications by Belitskiĭ and Lyubich and concerns the global asymptotic stability in the Schauder fixed point theorem. This is followed by a theorem which states a necessary and sufficient condition for the iterates of a holomorphic function with a fixed point to converge pointwise to this point.
We present a new necessary and sufficient condition for the asymptotic stability of Markov operators acting on the space of signed measures. The proof is based on some special properties of the total variation norm. Our method allows us to consider the Tjon-Wu equation in a linear form. More precisely a new proof of the asymptotic stability of a stationary solution of the Tjon-Wu equation is given.
We study the asymptotic behaviour of the Markov semigroup generated by an integro-partial differential equation. We give new sufficient conditions for asymptotic stability of this semigroup.
We give sufficient conditions for the existence of a matrix of probabilities such that a system of randomly chosen transformations , k = 1,...,N, with probabilities is asymptotically stable.
Asymptotic study of canonical correlation analysis gives the opportunity to present the different steps of an asymptotic study and to show the interest of an operator and tensor approach of multidimensional asymptotic statistics rather than the classical, matrix and analytic approach. Using the last approach, Anderson (1999) assumes the random vectors to have a normal distribution and the non zero canonical correlation coefficients to be distinct. The new approach we use, Fine (2000), is coordinate-free,...