On the existence of solution of the equation and a generalized coincidence degree theory. II.
We have given several proofs on the existence of the price equilibrium --- via variational inequality --- via degree theory and via Brouwer's theorems.
In this paper we prove some approximate fixed point theorems which extend, in a broad sense, analogous results obtained by Brânzei, Morgan, Scalzo and Tijs in 2003. By assuming also the weak demiclosedness property we state two fixed point theorems. Moreover, we study the existence of ɛ-Nash equilibria.
It is shown that if a Banach space X has the weak Banach-Saks property and the weak fixed point property for nonexpansive mappings and Y has the asymptotic (P) property (which is weaker than the condition WCS(Y) > 1), then X ⊕ Y endowed with a strictly monotone norm enjoys the weak fixed point property. The same conclusion is valid if X admits a 1-unconditional basis.
We show that if a Banach space X has the weak fixed point property for nonexpansive mappings and Y has the generalized Gossez-Lami Dozo property or is uniformly convex in every direction, then the direct sum X ⊕ Y with a strictly monotone norm has the weak fixed point property. The result is new even if Y is finite-dimensional.
In this paper, we establish a new version of Siegel's fixed point theorem in generating spaces of quasi-metric family. As consequences, we obtain general versions of the Downing-Kirk's fixed point and Caristi's fixed point theorem in the same spaces. Some applications of these results to fuzzy metric spaces and probabilistic metric spaces are presented.