The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let and be solid sequence spaces. For a sequence of modulus functions let . Given another sequence of modulus functions , we characterize the continuity of the superposition operators from into for some Banach sequence spaces and under the assumptions that the moduli
We transform the concept of p-summing operators, 1≤ p < ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.
Let ⟨X,Y⟩ be a duality pair of M-spaces X,Y of measurable functions from Ω ⊂ ℝ ⁿ into . The paper deals with Y-weak cluster points ϕ̅ of the sequence in X, where is measurable for j ∈ ℕ and is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set , the integral exists for and on , where is a measurable-dependent family of Radon probability measures on .
Currently displaying 1 –
7 of
7