The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 9 of 9

Showing per page

Limits of minimum problems for general integral functionals with unilateral obstacles

Gianni Dal Maso (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Se il problema di minimo ( 𝒫 ) è il limite, in senso variazionale, di una successione di problemi di minimo con ostacoli del tipo min u ψ h A [ f h ( x , u , D u ) + b ( x , u ) ] d x , allora ( 𝒫 ) può essere scritto nella forma min u { A [ f ( x , u , D u ) + b ( x , u ) ] d x + A g ( x , u ~ ( x ) ) d λ ( x ) } dove u ~ è un conveniente rappresentante di u e λ è una misura non negativa.

Local Lipschitz continuity of the stop operator

Wolfgang Desch (1998)

Applications of Mathematics

On a closed convex set Z in N with sufficiently smooth ( 𝒲 2 , ) boundary, the stop operator is locally Lipschitz continuous from 𝐖 1 , 1 ( [ 0 , T ] , N ) × Z into 𝐖 1 , 1 ( [ 0 , T ] , N ) . The smoothness of the boundary is essential: A counterexample shows that 𝒞 1 -smoothness is not sufficient.

Currently displaying 1 – 9 of 9

Page 1