The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
258
A combinatorial characterization of finite projective planes using strongly canonical forms of incidence matrices is presented. The corresponding constructions are applied to known projective planes of order 9. As a result a new description of the Hughes plane of order nine is obtained.
J. Andre constructed a skewaffine structure as a group space of a normally transitive group. In this paper his construction is used to describe the structure of the set of circles not passing through a point of a Laguerre plane. Sufficient conditions to ensure that this structure is a skewaffine plane are given.
A special case of a combinatorial theorem of De Bruijn and Erdős asserts that every noncollinear set of points in the plane determines at least distinct lines. Chen and Chvátal suggested a possible generalization of this assertion in metric spaces with appropriately defined lines. We prove this generalization in all metric spaces where each nonzero distance equals or .
A definable subset of a Euclidean space X is called perfectly situated if it can be represented in some linear system of coordinates as a finite union of (graphs of) definable 𝓒¹-maps with bounded derivatives. Two subsets of X are called simply separated if they satisfy the Łojasiewicz inequality with exponent 1. We show that every closed definable subset of X of dimension k can be decomposed into a finite family of closed definable subsets each of which is perfectly situated and such that any...
Currently displaying 21 –
40 of
258