On pythagorean angles
We introduce the rainbowness of a polyhedron as the minimum number such that any colouring of vertices of the polyhedron using at least colours involves a face all vertices of which have different colours. We determine the rainbowness of Platonic solids, prisms, antiprisms and ten Archimedean solids. For the remaining three Archimedean solids this parameter is estimated.
Properties of -ary groups connected with the affine geometry are considered. Some conditions for an -ary -group to be derived from a binary group are given. Necessary and sufficient conditions for an -ary group -derived from an additive group of a field to be an -group are obtained. The existence of non-commutative -ary -groups which are not derived from any group of arity for every , is proved.
It is shown that the maximum size of a set of vectors of a -dimensional vector space over , with the property that every subset of size is a basis, is at most , if , and at most , if , where and is prime. Moreover, for , the sets of maximum size are classified, generalising Beniamino Segre’s “arc is a conic” theorem. These results have various implications. One such implication is that a matrix, with and entries from , has columns which are linearly dependent. Another is...