Displaying 141 – 160 of 237

Showing per page

The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry

Oğuzhan Demirel (2009)

Commentationes Mathematicae Universitatis Carolinae

In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.

The Veldkamp space of two-qubits.

Saniga, Metod, Planat, Michel, Pracna, Petr, Havlicek, Hans (2007)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

The weight distribution of the functional codes defined by forms of degree 2 on Hermitian surfaces

Frédéric A. B. Edoukou (2009)

Journal de Théorie des Nombres de Bordeaux

We study the functional codes C 2 ( X ) defined on a projective algebraic variety X , in the case where X 3 ( 𝔽 q ) is a non-degenerate Hermitian surface. We first give some bounds for # X Z ( 𝒬 ) ( 𝔽 q ) , which are better than the ones known. We compute the number of codewords reaching the second weight. We also estimate the third weight, show the geometrical structure of the codewords reaching this third weight and compute their number. The paper ends with a conjecture on the fourth weight and the fifth weight of the code C 2 ( X ) .

Currently displaying 141 – 160 of 237