The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 77

Showing per page

Extremal points of high-dimensional random walks and mixing times of a brownian motion on the sphere

Ronen Eldan (2014)

Annales de l'I.H.P. Probabilités et statistiques

We derive asymptotics for the probability that the origin is an extremal point of a random walk in n . We show that in order for the probability to be roughly 1 / 2 , the number of steps of the random walk should be between e n / ( C log n ) and e C n log n for some constant C g t ; 0 . As a result, we attain a bound for the π 2 -covering time of a spherical Brownian motion.

Illumination bodies and affine surface area

Elisabeth Werner (1994)

Studia Mathematica

We show that the affine surface area as(∂K) of a convex body K in n can be computed as a s ( K ) = l i m δ 0 d n ( v o l n ( K δ ) - v o l n ( K ) ) / ( δ 2 / ( n + 1 ) ) where d n is a constant and K δ is the illumination body.

O Pickově vzorci a rozměňování peněz

Marie Holíková (2016)

Pokroky matematiky, fyziky a astronomie

V tomto článku představíme jeden méně známý elegantní důkaz Pickova vzorce pro výpočet obsahu jednoduchých mřížových mnohoúhelníků, který je založen na tzv. úhlech viditelnosti. Princip tohoto důkazu lze částečně použít i k odvození zobecněného Pickova vzorce pro mřížové mnohoúhelníky, které nejsou jednoduché. Dále naznačíme potíže spojené s prostorovou analogií Pickova vzorce. Nakonec ukážeme, jak Pickův vzorec souvisí s rozměňováním peněz.

Currently displaying 21 – 40 of 77