Generalized -space-forms
We prove that any compact simply connected manifold carrying a structure of Riemannian 3- or 4-symmetric space is formal in the sense of Sullivan. This result generalizes Sullivan's classical theorem on the formality of symmetric spaces, but the proof is of a different nature, since for generalized symmetric spaces techniques based on the Hodge theory do not work. We use the Thomas theory of minimal models of fibrations and the classification of 3- and 4-symmetric spaces.
We study classifying problems of real hypersurfaces in a complex two-plane Grassmannian . In relation to the generalized Tanaka-Webster connection, we consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator coincides with the covariant derivative. In this case, we prove complete classifications for real hypersurfaces in satisfying such conditions.
For G = SU(n), Sp(n) or Spin(n), let be the centralizer of a certain SU(2) in G. We have a natural map . For a generator α of , we describe J⁎(α). In particular, it is proved that is injective.
We give a uniform, explicit description of the generic types of one–step bracket–generating distributions of rank four. A manifold carrying such a structure has dimension at least five and no higher than ten. For each of the generic types, we give a brief description of the resulting class of generic distributions and of geometries equivalent to them. For dimensions different from eight and nine, these are available in the literature. The remaining two cases are dealt with in my doctoral thesis.