Displaying 321 – 340 of 763

Showing per page

Complete spacelike hypersurfaces with constant scalar curvature

Schi Chang Shu (2008)

Archivum Mathematicum

In this paper, we characterize the n -dimensional ( n 3 ) complete spacelike hypersurfaces M n in a de Sitter space S 1 n + 1 with constant scalar curvature and with two distinct principal curvatures one of which is simple.We show that M n is a locus of moving ( n - 1 ) -dimensional submanifold M 1 n - 1 ( s ) , along M 1 n - 1 ( s ) the principal curvature λ of multiplicity n - 1 is constant and M 1 n - 1 ( s ) is umbilical in S 1 n + 1 and is contained in an ( n - 1 ) -dimensional sphere S n - 1 ( c ( s ) ) = E n ( s ) S 1 n + 1 and is of constant curvature ( d { log | λ 2 - ( 1 - R ) | 1 / n } d s ) 2 - λ 2 + 1 ,where s is the arc length of an orthogonal trajectory of the family...

Complétude et flots nul-géodésibles en géométrie lorentzienne

Pierre Mounoud (2004)

Bulletin de la Société Mathématique de France

On étudie la complétude géodésique des flots nul-prégéodésiques sur les variétés lorentziennes compactes, ce qui donne une obstruction à être nul-géodésique. On montre que lorsque l’orthogonal du champ de vecteurs engendrant le flot considéré s’intègre en un feuilletage , la complétude du flot se lit sur l’holonomie de . On montre ainsi qu’il n’existe pas de flots nul-géodésiques lisses sur S 3 . On montre aussi qu’un 2 -tore lorentzien est nul-complet si et seulement si ses feuilletages de type lumière...

Complex geodesics and isometries in Cartan domains of type four

Edoardo Vesentini (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Holomorphic maps of Cartan domains of type four preserving the supports of complex geodesics are characterized, providing, in particular, a new description of holomorphic isometries.

Currently displaying 321 – 340 of 763