On Interior regularity and Liouville's theorem for harmonic mappings.
Invariant polynomial operators on Riemannian manifolds are well understood and the knowledge of full lists of them becomes an effective tool in Riemannian geometry, [Atiyah, Bott, Patodi, 73] is a very good example. The present short paper is in fact a continuation of [Slovák, 92] where the classification problem is reconsidered under very mild assumptions and still complete classification results are derived even in some non-linear situations. Therefore, we neither repeat the detailed exposition...
Approximately 150 map projections are known, but the inverse forms have been published for only two-thirds of them. This paper focuses on finding the inverse forms of van der Grinten projections I--IV, both by non-linear partial differential equations and by the straightforward inverse of their projection equations. Taking into account the particular cases, new derivations of coordinate functions are also presented. Both the direct and inverse equations have the analytic form, are easy to implement...
The following results are proved: The center of any finite index subgroup of an irreducible, infinite, nonaffine Coxeter group is trivial; Any finite index subgroup of an irreducible, infinite, nonaffine Coxeter group cannot be expressed as a product of two nontrivial subgroups. These two theorems imply a unique decomposition theorem for a class of Coxeter groups. We also prove that the orbit of each element other than the identity under the conjugation action in an irreducible, infinite, nonaffine...
We classify the isometries in the non-identity component of the whole isometry group of the symmetric space of positive 3 × 3 matrices of determinant 1: we determine the translation lengths, minimal spaces and fixed points at infinity.
We prove that every isotropic Berwald metric of scalar flag curvature is a Randers metric. We study the relation between an isotropic Berwald metric and a Randers metric which are pointwise projectively related. We show that on constant isotropic Berwald manifolds the notions of R-quadratic and stretch metrics are equivalent. Then we prove that every complete generalized Landsberg manifold with isotropic Berwald curvature reduces to a Berwald manifold. Finally, we study C-conformal changes of isotropic...
In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.