Displaying 441 – 460 of 763

Showing per page

Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane

Yuri L. Sachkov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is studied. Local and global optimality of extremal trajectories is characterized. Lower and upper bounds on the first conjugate time are proved. The cut time is shown to be equal to the first Maxwell time corresponding to the group of discrete symmetries of the exponential mapping. Optimal synthesis on an open dense subset of the state space is described.

Conjugate-cut loci and injectivity domains on two-spheres of revolution

Bernard Bonnard, Jean-Baptiste Caillau, Gabriel Janin (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In a recent article [B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 1081–1098], we relate the computation of the conjugate and cut loci of a family of metrics on two-spheres of revolution whose polar form is g = dϕ2 + m(ϕ)dθ2 to the period mapping of the ϕ-variable. One purpose of this article is to use this relation to evaluate the cut and conjugate loci for a family of metrics arising as a deformation of the round sphere and to determine...

Conjugation spaces.

Hausmann, Jean-Claude, Holm, Tara, Puppe, Volker (2005)

Algebraic & Geometric Topology

Connecting orbits of time dependent Lagrangian systems

Patrick Bernard (2002)

Annales de l’institut Fourier

We generalize to higher dimension results of Birkhoff and Mather on the existence of orbits wandering in regions of instability of twist maps. This generalization is strongly inspired by the one proposed by Mather. However, its advantage is that it contains most of the results of Birkhoff and Mather on twist maps.

Connection induced geometrical concepts

Musilová, Pavla, Musilová, Jana (2006)

Proceedings of the 25th Winter School "Geometry and Physics"

Summary: Geometrical concepts induced by a smooth mapping f : M N of manifolds with linear connections are introduced, especially the (higher order) covariant differentials of the mapping tangent to f and the curvature of a corresponding tensor product connection. As an useful and physically meaningful consequence a basis of differential invariants for natural operators of such smooth mappings is obtained for metric connections. A relation to geometry of Riemannian manifolds is discussed.

Connections for non-holonomic 3-webs

Vanžurová, Alena (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

A non-holonomic 3-web is defined by two operators P and B such that P is a projector, B is involutory, and they are connected via the relation P B + B P = B . The so-called parallelizing connection with respect to which the 3-web distributions are parallel is defined. Some simple properties of such connections are found.

Currently displaying 441 – 460 of 763