The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 461 –
480 of
8747
We consider the integral functional
, , where , , is a nonempty bounded connected open subset of with smooth boundary, and is a convex, differentiable function. We prove that if admits a minimizer in depending only on the distance from the boundary of , then must be a ball.
A relatively simple algebraic framework is given, in which all the compact symmetric spaces can be described and handled without distinguishing cases. We also give some applications and further results.
Let be an -dimensional () simply connected Hadamard manifold. If the radial Ricci curvature of is bounded from below by with respect to some point , where is the Riemannian distance on to , is a nonpositive continuous function on , then the first nonzero Neumann eigenvalues of the Laplacian on the geodesic ball , with center and radius , satisfy
where is the solution to
We characterize totally η-umbilic real hypersurfaces in a nonflat complex space form M̃ₙ(c) (= ℂPⁿ(c) or ℂHⁿ(c)) and a real hypersurface of type (A₂) of radius π/(2√c) in ℂPⁿ(c) by observing the shape of some geodesics on those real hypersurfaces as curves in the ambient manifolds (Theorems 1 and 2).
In this paper we show that given any 3-manifold and any non-fibered class in there exists a representation such that the corresponding twisted Alexander polynomial is zero. We obtain this result by extending earlier work of ours and by combining this with recent results of Agol and Wise on separability of 3-manifold groups. This result allows us to completely classify symplectic 4-manifolds with a free circle action, and to determine their symplectic cones.
Currently displaying 461 –
480 of
8747