Displaying 701 – 720 of 1190

Showing per page

On the composition structure of the twisted Verma modules for 𝔰𝔩 ( 3 , )

Libor Křižka, Petr Somberg (2015)

Archivum Mathematicum

We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra 𝔰𝔩 ( 3 , ) , including the explicit structure of singular vectors for both 𝔰𝔩 ( 3 , ) and one of its Lie subalgebras 𝔰𝔩 ( 2 , ) , and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as D -modules on the Schubert cells in the full flag manifold for SL ( 3 , ) .

On the conformal relation between twistors and Killing spinors

Friedrich, Thomas (1990)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0699.00032.] The author considers the conformal relation between twistors and spinors on a Riemannian spin manifold of dimension n 3 . A first integral is constructed for a twistor spinor and various geometric properties of the spin manifold are deduced. The notions of a conformal deformation and a Killing spinor are considered and such a deformation of a twistor spinor into a Killing spinor and conditions for the equivalence of these quantities is indicated.

On the conformal theory of Ichijyō manifolds

Szakál, Sz. (2002)

Proceedings of the 21st Winter School "Geometry and Physics"

Some special linear connection introduced in the Finsler space by Ichijyō has the property that the curvature tensors under conformal changes remain invariant. Two Ichijyō manifolds ( M , E , ) and ( M , E ¯ , ¯ ) are said to be conformally equivalent if E ¯ = ( exp σ v ) E , σ C ( M ) .It is proved, that in this case, the following assertions are equivalent: 1. σ is constant, 2. h = h ¯ , 3. S = S ¯ , 4. t = t ¯ .It is also proved (when the above conditions are satisfied) that1. If ( M , E , ) is a generalized Berwald manifold, then ( M , E ¯ , ¯ ) is also a generalized Berwald manifold.2....

Currently displaying 701 – 720 of 1190