On the Covariant Differential of an Almost Hermitian Structure.
We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.
The Fisher informational metric is unique in some sense (it is the only Markovian monotone distance) in the classical case. A family of Riemannian metrics is called monotone if its members are decreasing under stochastic mappings. These are the metrics to play the role of Fisher metric in the quantum case. Monotone metrics can be labeled by special operator monotone functions, according to Petz's Classification Theorem. The aim of this paper is to present an idea how one can narrow the set of monotone...
Let be a harmonic map from surface into complex Grassmann manifold. In this paper, some sufficient conditions for the harmonic sequence generated by to have degenerate -transform or -transform are given.