The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 881 –
900 of
8747
Given a smooth S¹-foliated bundle, A. Connes has shown the existence of an additive morphism ϕ from the K-theory group of the foliation C*-algebra to the scalar field, which factorizes, via the assembly map, the Godbillon-Vey class, which is the first secondary characteristic class, of the classifying space. We prove the invariance of this map under a bilipschitz homeomorphism, extending a previous result for maps of class C¹ by H. Natsume.
We classify nonminimal biminimal Legendrian surfaces in 5-dimensional Sasakian space forms.
Binary operations on algebras of observables are studied in the quantum as well as in the classical case. It is shown that certain natural compatibility conditions with the associative product imply properties which are usually additionally required.
We obtain a blow-up theorem for regular submanifolds in the Heisenberg group, where intrinsic dilations are used. Main consequence of this result is an explicit formula for the density of (p+1)-dimensional spherical Hausdorff measure restricted to a p-dimensional submanifold with respect to the Riemannian surface measure. We explicitly compute this formula in some simple examples and we present a lower semicontinuity result for the spherical Hausdorff measure with respect to the weak convergence...
Let ϕ :(M,F)→ (N,h) be a harmonic map from a Finsler manifold to any Riemannian manifold. We establish Bochner's formula for the energy density of ϕ and maximum principle on Finsler manifolds, from which we deduce some properties of harmonic maps ϕ.
The notions of left Bol and Bol-Bruck actions are introduced. A purely algebraic analogue of a Nono family (Lie triple family), the so called Sabinin-Nono family, is given. It is shown that any Sabinin-Nono family is a left Bol-Bruck action. Finally it is proved that any local Nono family is a local left Bol-Bruck action. On general matters see [L.V. Sabinin 91, 99].
Currently displaying 881 –
900 of
8747