The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1861 –
1880 of
8747
An extension of the category of local manifolds is considered. Instead of smooth mappings of neighbourhoods of linear spaces as morphisms we deal with formal operator power series (or formal maps). Analogues of the objects appearing on smooth manifolds and vector bundles (vector fields, sections of a bundle, exterior forms, the de Rham complex, connection, etc.) are considered in this way. All the examinations are carried out in algebraic language, for we do not care about the convergence of formal...
In this note we compute the sectional curvature for the Bergman metric of the Cartan domain of type IV and we give a classification of complex totally geodesic manifolds for this metric.
Using the Plücker map between grassmannians, we study basic aspects of classic grassmannian geometries. For ‘hyperbolic’ grassmannian geometries, we prove some facts (for instance, that the Plücker map is a minimal isometric embedding) that were previously known in the ‘elliptic’ case.
An idea for quantization by means of geometric observables is explained, which is a kind of the sheaf theoretical methods. First the formulation of differential geometry by using the structure sheaf is explained. The point of view to get interesting noncommutative observable algebras of geometric fields is introduced. The idea is to deform the algebra by suitable interaction structures. As an example of such structures the Poisson-structure is mentioned and this leads naturally to deformation...
Currently displaying 1861 –
1880 of
8747