The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 34

Showing per page

Sequential compactness vs. countable compactness

Angelo Bella, Peter Nyikos (2010)

Colloquium Mathematicae

The general question of when a countably compact topological space is sequentially compact, or has a nontrivial convergent sequence, is studied from the viewpoint of basic cardinal invariants and small uncountable cardinals. It is shown that the small uncountable cardinal 𝔥 is both the least cardinality and the least net weight of a countably compact space that is not sequentially compact, and that it is also the least hereditary Lindelöf degree in most published models. Similar results, some definitive,...

Sequential + separable vs sequentially separable and another variation on selective separability

Angelo Bella, Maddalena Bonanzinga, Mikhail Matveev (2013)

Open Mathematics

A space X is sequentially separable if there is a countable D ⊂ X such that every point of X is the limit of a sequence of points from D. Neither “sequential + separable” nor “sequentially separable” implies the other. Some examples of this are presented and some conditions under which one of the two implies the other are discussed. A selective version of sequential separability is also considered.

Some applications of the point-open subbase game

D. Guerrero Sánchez, Vladimir Vladimirovich Tkachuk (2017)

Commentationes Mathematicae Universitatis Carolinae

Given a subbase 𝒮 of a space X , the game P O ( 𝒮 , X ) is defined for two players P and O who respectively pick, at the n -th move, a point x n X and a set U n 𝒮 such that x n U n . The game stops after the moves { x n , U n : n ø } have been made and the player P wins if n ø U n = X ; otherwise O is the winner. Since P O ( 𝒮 , X ) is an evident modification of the well-known point-open game P O ( X ) , the primary line of research is to describe the relationship between P O ( X ) and P O ( 𝒮 , X ) for a given subbase 𝒮 . It turns out that, for any subbase 𝒮 , the player P has a winning strategy...

Some conditions under which a uniform space is fine

Umberto Marconi (1993)

Commentationes Mathematicae Universitatis Carolinae

Let X be a uniform space of uniform weight μ . It is shown that if every open covering, of power at most μ , is uniform, then X is fine. Furthermore, an ω μ -metric space is fine, provided that every finite open covering is uniform.

Some non-multiplicative properties are l -invariant

Vladimir Vladimirovich Tkachuk (1997)

Commentationes Mathematicae Universitatis Carolinae

A cardinal function ϕ (or a property 𝒫 ) is called l -invariant if for any Tychonoff spaces X and Y with C p ( X ) and C p ( Y ) linearly homeomorphic we have ϕ ( X ) = ϕ ( Y ) (or the space X has 𝒫 ( X 𝒫 ) iff Y 𝒫 ). We prove that the hereditary Lindelöf number is l -invariant as well as that there are models of Z F C in which hereditary separability is l -invariant.

Currently displaying 1 – 20 of 34

Page 1 Next