The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 65

Showing per page

A generalization of Čech-complete spaces and Lindelöf Σ -spaces

Aleksander V. Arhangel'skii (2013)

Commentationes Mathematicae Universitatis Carolinae

The class of s -spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf p -spaces, metrizable spaces with the weight 2 ω , but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that s -spaces are in a duality with Lindelöf Σ -spaces: X is an s -space if and only if some (every) remainder of X in a compactification is a Lindelöf Σ -space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math. 220 (2013),...

A note on pseudobounded paratopological groups

Fucai Lin, Shou Lin, Iván Sánchez (2014)

Topological Algebra and its Applications

Let G be a paratopological group. Then G is said to be pseudobounded (resp. ω-pseudobounded) if for every neighbourhood V of the identity e in G, there exists a natural number n such that G = Vn (resp.we have G = ∪ n∈N Vn). We show that every feebly compact (2-pseudocompact) pseudobounded (ω-pseudobounded) premeager paratopological group is a topological group. Also,we prove that if G is a totally ω-pseudobounded paratopological group such that G is a Lusin space, then is G a topological group....

A note on spaces with countable extent

Yan-Kui Song (2017)

Commentationes Mathematicae Universitatis Carolinae

Let P be a topological property. A space X is said to be star P if whenever 𝒰 is an open cover of X , there exists a subspace A X with property P such that X = S t ( A , 𝒰 ) . In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.

A note on topological groups and their remainders

Liang-Xue Peng, Yu-Feng He (2012)

Czechoslovak Mathematical Journal

In this note we first give a summary that on property of a remainder of a non-locally compact topological group G in a compactification b G makes the remainder and the topological group G all separable and metrizable. If a non-locally compact topological group G has a compactification b G such that the remainder b G G of G belongs to 𝒫 , then G and b G G are separable and metrizable, where 𝒫 is a class of spaces which satisfies the following conditions: (1) if X 𝒫 , then every compact subset of the space X is a...

Addition theorems for dense subspaces

Aleksander V. Arhangel'skii (2015)

Commentationes Mathematicae Universitatis Carolinae

We study topological spaces that can be represented as the union of a finite collection of dense metrizable subspaces. The assumption that the subspaces are dense in the union plays a crucial role below. In particular, Example 3.1 shows that a paracompact space X which is the union of two dense metrizable subspaces need not be a p -space. However, if a normal space X is the union of a finite family μ of dense subspaces each of which is metrizable by a complete metric, then X is also metrizable by...

Aull-paracompactness and strong star-normality of subspaces in topological spaces

Kaori Yamazaki (2004)

Commentationes Mathematicae Universitatis Carolinae

We prove for a subspace Y of a T 1 -space X , Y is (strictly) Aull-paracompact in X and Y is Hausdorff in X if and only if Y is strongly star-normal in X . This result provides affirmative answers to questions of A.V. Arhangel’skii–I.Ju. Gordienko [3] and of A.V. Arhangel’skii [2].

Closed discrete subsets of separable spaces and relative versions of normality, countable paracompactness and property ( a )

Samuel Gomes da Silva (2011)

Commentationes Mathematicae Universitatis Carolinae

In this paper we show that a separable space cannot include closed discrete subsets which have the cardinality of the continuum and satisfy relative versions of any of the following topological properties: normality, countable paracompactness and property ( a ) . It follows that it is consistent that closed discrete subsets of a separable space X which are also relatively normal (relatively countably paracompact, relatively ( a ) ) in X are necessarily countable. There are, however, consistent examples of...

Closed subsets of absolutely star-Lindelöf spaces II

Yan-Kui Song (2003)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we prove the following two statements: (1) There exists a discretely absolutely star-Lindelöf Tychonoff space having a regular-closed subspace which is not CCC-Lindelöf. (2) Every Hausdorff (regular, Tychonoff) linked-Lindelöf space can be represented in a Hausdorff (regular, Tychonoff) absolutely star-Lindelöf space as a closed G δ subspace.

Continuous images of Lindelöf p -groups, σ -compact groups, and related results

Aleksander V. Arhangel'skii (2019)

Commentationes Mathematicae Universitatis Carolinae

It is shown that there exists a σ -compact topological group which cannot be represented as a continuous image of a Lindelöf p -group, see Example 2.8. This result is based on an inequality for the cardinality of continuous images of Lindelöf p -groups (Theorem 2.1). A closely related result is Corollary 4.4: if a space Y is a continuous image of a Lindelöf p -group, then there exists a covering γ of Y by dyadic compacta such that | γ | 2 ω . We also show that if a homogeneous compact space Y is a continuous...

Decompositions of cyclic elements of locally connected continua

D. Daniel (2010)

Colloquium Mathematicae

Let X denote a locally connected continuum such that cyclic elements have metrizable G δ boundary in X. We study the cyclic elements of X by demonstrating that each such continuum gives rise to an upper semicontinuous decomposition G of X into continua such that X/G is the continuous image of an arc and the cyclic elements of X correspond to the cyclic elements of X/G that are Peano continua.

Currently displaying 1 – 20 of 65

Page 1 Next