The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A connected topological space is unicoherent provided that if where and are closed connected subsets of , then is connected. Let be a unicoherent space, we say that makes a hole in if is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole.
For a Tychonoff space , let be the family of hypographs of all continuous maps from to endowed with the Fell topology. It is proved that has a dense separable metrizable locally compact open subset if is metrizable. Moreover, for a first-countable space , is metrizable if and only if itself is a locally compact separable metrizable space. There exists a Tychonoff space such that is metrizable but is not first-countable.
We define a metric , called the shape metric, on the hyperspace of all non-empty compact subsets of a metric space X. Using it we prove that a compactum X in the Hilbert cube is movable if and only if X is the limit of a sequence of polyhedra in the shape metric. This fact is applied to show that the hyperspace , dS)2ℝ2
Currently displaying 1 –
6 of
6