The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Diagonals and discrete subsets of squares

Dennis Burke, Vladimir Vladimirovich Tkachuk (2013)

Commentationes Mathematicae Universitatis Carolinae

In 2008 Juhász and Szentmiklóssy established that for every compact space X there exists a discrete D X × X with | D | = d ( X ) . We generalize this result in two directions: the first one is to prove that the same holds for any Lindelöf Σ -space X and hence X ω is d -separable. We give an example of a countably compact space X such that X ω is not d -separable. On the other hand, we show that for any Lindelöf p -space X there exists a discrete subset D X × X such that Δ = { ( x , x ) : x X } D ¯ ; in particular, the diagonal Δ is a retract of D ¯ and the projection...

Currently displaying 1 – 2 of 2

Page 1