### ${\mathcal{C}}_{p}-E$-movable and $\mathcal{C}-E$-calm compacta and their images

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We continue the study of 1/2-homogeneity of the hyperspace suspension of continua. We prove that if X is a decomposable continuum and its hyperspace suspension is 1/2-homogeneous, then X must be continuum chainable. We also characterize 1/2-homogeneity of the hyperspace suspension for several classes of continua, including: continua containing a free arc, atriodic and decomposable continua, and decomposable irreducible continua about a finite set.

It is well known that a function $f$ from a space $X$ into a space $Y$ is continuous if and only if, for every set $K$ in $X$ the image of the closure of $K$ under $f$ is a subset of the closure of the image of it. In this paper we characterize almost continuity and weak continuity by proving similar relations for the subsets $K$ of $X$.