The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 23 of 23

Showing per page

On typical parametrizations of finite-dimensional compacta on the Cantor set

Paweł Milewski (2002)

Fundamenta Mathematicae

We prove that if X is a perfect finite-dimensional compactum, then for almost every continuous surjection of the Cantor set onto X, the set of points of maximal order is uncountable. Moreover, if X is a perfect compactum of positive finite dimension then for a typical parametrization of X on the Cantor set, the set of points of maximal order is homeomorphic to the product of the rationals and the Cantor set.

Currently displaying 21 – 23 of 23

Previous Page 2