The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove a separable reduction theorem for -porosity of Suslin sets. In particular, if is a Suslin subset in a Banach space , then each separable subspace of can be enlarged to a separable subspace such that is -porous in if and only if is -porous in . Such a result is proved for several types of -porosity. The proof is done using the method of elementary submodels, hence the results can be combined with other separable reduction theorems. As an application we extend a theorem...
Currently displaying 1 –
7 of
7