On the foundations of Topology
We associate to a given polynomial map from to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.
In questo articolo studiamo i gruppi di una sfera e proviamo che il gruppo è isomorfo all'ennesimo gruppo di omotopia di , nell'ipotesi che sia una classe coconnessa di links ammissibili.
Let M be a closed, connected, orientable 3-manifold. Denote by n(S1 x S2) the connected sum of n copies of S1 x S2. We prove that if the homological category of M is three then for some n ≥ 1, H*(M) is isomorphic (as a ring) to H*(n(S1 x S2)).