The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 16 of 16

Showing per page

The Fukumoto-Furuta and the Ozsváth-Szabó invariants for spherical 3-manifolds

Masaaki Ue (2009)

Banach Center Publications

We show that the Fukumoto-Furuta invariant for a rational homology 3-sphere M, which coincides with the Neumann-Siebenmann invariant for a Seifert rational homology 3-sphere, is the same as the Ozsváth-Szabó's correction term derived from the Heegaard Floer homology theory if M is a spherical 3-manifold.

The geography of simply-connected symplectic manifolds

Mi Sung Cho, Yong Seung Cho (2003)

Czechoslovak Mathematical Journal

By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain × is covered by minimal, simply connected, symplectic 4-manifolds.

Topological manifolds and real algebraic geometry

Alberto Tognoli (2003)

Bollettino dell'Unione Matematica Italiana

We study the problem of approximating, up to homotopy, compact topological manifolds by real algebraic varieties. As a consequence, we realize any integral non-degenerate quadratic form as the intersection form of a real algebraic variety. This is related to a well-known result, due to Freedman [F], on the topology of closed simply-connected topological 4 -manifolds.

Currently displaying 1 – 16 of 16

Page 1