A note on heat kernel estimates on weighted graphs with two-sided bounds on the weights.
Let be a Lipschitz function on a superreflexive Banach space . We prove that then the set of points of at which has no intermediate derivative is not only a first category set (which was proved by M. Fabian and D. Preiss for much more general spaces ), but it is even -porous in a rather strong sense. In fact, we prove the result even for a stronger notion of uniform intermediate derivative which was defined by J.R. Giles and S. Sciffer.
An -ary Poisson bracket (or generalized Poisson bracket) on the manifold is a skew-symmetric -linear bracket of functions which is a derivation in each argument and satisfies the generalized Jacobi identity of order , i.e.,
We describe a new link between Perelman’s monotonicity formula for the reduced volume and ideas from optimal transport theory.
We investigate the Banach manifold consisting of complex functions on the unit disc having boundary values in a given one-dimensional submanifold of the plane. We show that ∂/∂λ̅ restricted to that submanifold is a Fredholm mapping. Moreover, for any such function we obtain a relation between its homotopy class and the Fredholm index.