Displaying 241 – 260 of 5443

Showing per page

A one-sided version of Alexiewicz-Orlicz's differentiability theorem.

E. Corbacho, A. Plichko, V. Tarieladze (2005)

RACSAM

Modificando adecuadamente el método de un trabajo olvidado [1], probamos que si una aplicación continua, de un subconjunto abierto no vacío U de un espacio vectorial topológico metrizable separable y de Baire E, en un espacio localmente convexo, es direccionalmente diferenciable por la derecha en U según un subconjunto comagro de E, entonces, es genéricamente Gâteaux diferenciable en U. Nuestro resultado implica que cualquier espacio vectorial topológico, metrizable, separable y de Baire, es débilmente...

A positive solution for an asymptotically linear elliptic problem on N autonomous at infinity

Louis Jeanjean, Kazunaga Tanaka (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we establish the existence of a positive solution for an asymptotically linear elliptic problem on N . The main difficulties to overcome are the lack of a priori bounds for Palais–Smale sequences and a lack of compactness as the domain is unbounded. For the first one we make use of techniques introduced by Lions in his work on concentration compactness. For the second we show how the fact that the “Problem at infinity” is autonomous, in contrast to just periodic, can be used in order...

A positive solution for an asymptotically linear elliptic problem on N autonomous at infinity

Louis Jeanjean, Kazunaga Tanaka (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we establish the existence of a positive solution for an asymptotically linear elliptic problem on N . The main difficulties to overcome are the lack of a priori bounds for Palais–Smale sequences and a lack of compactness as the domain is unbounded. For the first one we make use of techniques introduced by Lions in his work on concentration compactness. For the second we show how the fact that the “Problem at infinity” is autonomous, in contrast to just periodic, can be used in order...

A posteriori error analysis for parabolic variational inequalities

Kyoung-Sook Moon, Ricardo H. Nochetto, Tobias von Petersdorff, Chen-song Zhang (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Motivated by the pricing of American options for baskets we consider a parabolic variational inequality in a bounded polyhedral domain Ω d with a continuous piecewise smooth obstacle. We formulate a fully discrete method by using piecewise linear finite elements in space and the backward Euler method in time. We define an a posteriori error estimator and show that it gives an upper bound for the error in L2(0,T;H1(Ω)). The error estimator is localized in the sense that the size of the elliptic residual...

A principle of linearization in theory of stability of solutions of variational inequalities

Jiří Neustupa (1995)

Mathematica Bohemica

It is shown that the uniform exponential stability and the uniform stability at permanently acting disturbances of a sufficiently smooth but not necessarily steady-state solution of a general variational inequality is a consequence of the uniform exponential stability of a zero solution of another (so called linearized) variational inequality.

A proof of the stratified Morse inequalities for singular complex algebraic curves using the Witten deformation

Ursula Ludwig (2011)

Annales de l’institut Fourier

The Witten deformation is an analytic method proposed by Witten which, given a Morse function f : M R on a smooth compact manifold M , allows to prove the Morse inequalities. The aim of this article is to generalise the Witten deformation to stratified Morse functions (in the sense of stratified Morse theory as developed by Goresky and MacPherson) on a singular complex algebraic curve. In a previous article the author developed the Witten deformation for the model of an algebraic curve with cone-like singularities...

Currently displaying 241 – 260 of 5443