On sectioning multiples of the nontrivial line bundle over Grassmannians
Let () denote the Grassmann manifold of linear -spaces (resp. oriented -spaces) in , and suppose . As an easy consequence of the Steenrod obstruction theory, one sees that -fold Whitney sum of the nontrivial line bundle over always has a nowhere vanishing section. The author deals with the following question: What is the least () such that the vector bundle admits a nowhere vanishing section ? Obviously, , and for the special case in which , it is known that . Using results...