The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 281 –
300 of
622
In this paper, we study the one-dimensional wave equation with Boltzmann damping. Two different Boltzmann integrals that represent the memory of materials are considered. The spectral properties for both cases are thoroughly analyzed. It is found that when the memory of system is counted from the infinity, the spectrum of system contains a left half complex plane, which is sharp contrast to the most results in elastic vibration systems that the vibrating dynamics can be considered from the vibration...
[For the entire collection see Zbl 0699.00032.] A connection structure (M,H) and a path structure (M,S) on the manifold M are called compatible, if locally where and express the semi-spray S and the connection map H, resp. In the linear case of H its geodesic spray S is quadratic: On the contrary, the homogeneity condition of S induces the relation for the compatible connection H, whence it follows not that H is linear, i.e. if a connection structure is compatible with a spray, then...
We study the internal stabilization and control of the critical nonlinear Klein-Gordon equation on 3-D compact manifolds. Under a geometric assumption slightly stronger than the classical geometric control condition, we prove exponential decay for some solutions bounded in the energy space but small in a lower norm. The proof combines profile decomposition and microlocal arguments. This profile decomposition, analogous to the one of Bahouri-Gérard [2] on , is performed by taking care of possible...
Let Mⁿ (n ≥ 3) be an n-dimensional complete hypersurface in a real space form N(c) (c ≥ 0). We prove that if the sectional curvature of M satisfies the following pinching condition: , where δ = 1/5 for n ≥ 4 and δ = 1/4 for n = 3, then there are no stable currents (or stable varifolds) in M. This is a positive answer to the well-known conjecture of Lawson and Simons.
This work presents a setting for the formulation of the mechanics of growing bodies. By the mechanics of growing bodies we mean a theory in which the material structure of the body does not remain fixed. Material points may be added or removed from the body.
Let and be fiber product preserving bundle functors on the category of fibred manifolds with -dimensional bases and fibred maps covering local diffeomorphisms. We define a quasi-morphism to be a -invariant algebra homomorphism with . The main result is that there exists an -natural transformation depending on a classical linear connection on the base of if and only if there exists a quasi-morphism . As applications, we study existence problems of symmetrization (holonomization)...
Given an embeddable manifold and a non-characteristic hypersurface we present a necessary condition for the tangential Cauchy-Riemann operator on to be locally solvable near a point in one of the sidesdetermined by .
Currently displaying 281 –
300 of
622