Estimation des fonctions de Littlewood-Paley-Stein sur les variétés riemanniennes à courbure non positive
The free motion of a thin elastic linear membrane is described, in a simplyfied model, by a second order linear homogeneous hyperbolic system of partial differential equations whose spatial part is the Laplace Beltrami operator acting on a Riemannian 2-dimensional manifold with boundary. We adapt the estimates of the spectrum of the Laplacian obtained in the last years by several authors for compact closed Riemannian manifolds. To make so, we use the standard technique of the doubled manifold to...
In the first part of this paper, we study the best constant involving the L2 norm in Wente's inequality. We prove that this best constant is universal for any Riemannian surface with boundary, or respectively, for any Riemannian surface without boundary. The second part concerns the study of critical points of the associate energy functional, whose Euler equation corresponds to H-surfaces. We will establish the existence of a non-trivial critical point for a plan domain with small holes.
À l’aide de la théorie des itinéraires et des suites de tricotage, nous étudions la conjugaison topologique des fonctions unimodales. Nous introduisons la notion de conjugaison macroscopique, caractérisée par l’égalité des suites de tricotage. Puis nous présentons un théorème de classification des fonctions unimodales. Pour illustrer ces résultats, nous montrons que l’ensemble des solutions de l’équation de Feigenbaum contient une infinité de classes topologiques.
Dans cet article nous faisons l’étude algébrique des jets de Demailly-Semple en dimension 3 en utilisant la théorie des invariants des groupes non réductifs. Cette étude fournit la caractérisation géométrique du fibré des jets d’ordre 3 sur une variété de dimension 3 et permet d’effectuer, par Riemann-Roch, un calcul de caractéristique d’Euler.
Cet article contient une démonstration géométrique simple de pour .Ce résultat (démontré aussi par Mather comme corollaire d’un théorème beaucoup plus général) apparaît comme une conséquence du théorème de Michael Herman : .L’appendice contient une étude des structures sur les surfaces et un résultat sur la cohomologie de .