A Note on Quasicontinuous Kernels Representing Quasi-Linear Positive Maps.
We consider the continuous time, one-dimensional random walk in random environment in Sinai’s regime. We show that the probability for the particle to be, at time and in a typical environment, at a distance larger than () from its initial position, is .
We consider the continuous time, one-dimensional random walk in random environment in Sinai's regime. We show that the probability for the particle to be, at time t and in a typical environment, at a distance larger than ta (0<a<1) from its initial position, is exp{-Const ⋅ ta/[(1 - a)lnt](1 + o(1))}.
Spider walks are systems of interacting particles. The particles move independently as long as their movements do not violate some given rules describing the relative position of the particles; moves that violate the rules are not realized. The goal of this paper is to study qualitative properties, as recurrence, transience, ergodicity, and positive rate of escape of these Markov processes.
Spider walks are systems of interacting particles. The particles move independently as long as their movements do not violate some given rules describing the relative position of the particles; moves that violate the rules are not realized. The goal of this paper is to study qualitative properties, as recurrence, transience, ergodicity, and positive rate of escape of these Markov processes.
In this note we give an elementary proof of a characterization for stability of multivariate distributions by considering a functional equation.
Recently Balakrishnan and Iliopoulos [Ann. Inst. Statist. Math. 61 (2009)] gave sufficient conditions under which the maximum likelihood estimator (MLE) is stochastically increasing. In this paper we study test plans which are not considered there and we prove that the MLEs for those plans are also stochastically ordered. We also give some applications to the estimation of reliability.