Displaying 461 – 480 of 10046

Showing per page

A note on the almost sure limiting behavior of the maximun of a sequence of partial sums.

André Adler (1988)

Stochastica

The goal of this paper is to show that, in most strong laws of large numbers, the nth partial sum can be replaced with the largest of the first n sums. Moreover it is shown that the usual assumptions of independence and common distribution are unnecessary and that these results apply also to strong laws for Banach valued random elements.

A Note on the Asymptotic Behaviour of a Periodic Multitype Galton-Watson Branching Process

González, M., Martínez, R., Mota, M. (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 60J80.In this work, the problem of the limiting behaviour of an irreducible Multitype Galton-Watson Branching Process with period d greater than 1 is considered. More specifically, almost sure convergence of some linear functionals depending on d consecutive generations is studied under hypothesis of non extinction. As consequence the main parameters of the model are given a convenient interpretation from a practical point of view. For a better understanding...

A note on the characterization ofsome minification processes

Wiesław Dziubdziela (1997)

Applicationes Mathematicae

We present a stochastic model which yields a stationary Markov process whose invariant distribution is maximum stable with respect to the geometrically distributed sample size. In particular, we obtain the autoregressive Pareto processes and the autoregressive logistic processes introduced earlier by Yeh et al

A note on the density of the parabolic area integral.

Ileana Iribarren (2001)

Collectanea Mathematica

The density of the area integral for parabolic functions is defined in analogy with the case of harmonic functions. We prove its equivalence with the local time of the associated martingale. Using probabilistic methods, we show its equivalence in L p -norm with the parabolic area function for p>1.

A note on the Ehrhard inequality

Rafał Latała (1996)

Studia Mathematica

We prove that for λ ∈ [0,1] and A, B two Borel sets in n with A convex, Φ - 1 ( γ n ( λ A + ( 1 - λ ) B ) ) λ Φ - 1 ( γ n ( A ) ) + ( 1 - λ ) Φ - 1 ( γ n ( B ) ) , where γ n is the canonical gaussian measure in n and Φ - 1 is the inverse of the gaussian distribution function.

Currently displaying 461 – 480 of 10046