Displaying 621 – 640 of 10046

Showing per page

A Riemann approach to random variation

Patrick Muldowney (2006)

Mathematica Bohemica

This essay outlines a generalized Riemann approach to the analysis of random variation and illustrates it by a construction of Brownian motion in a new and simple manner.

A second order approximation for the inverse of the distribution function of the sample mean

Jorge M. Arevalillo (2001)

Kybernetika

The classical quantile approximation for the sample mean, based on the central limit theorem, has been proved to fail when the sample size is small and we approach the tail of the distribution. In this paper we will develop a second order approximation formula for the quantile which improves the classical one under heavy tails underlying distributions, and performs very accurately in the upper tail of the distribution even for relatively small samples.

A second order SDE for the Langevin process reflected at a completely inelastic boundary

Jean Bertoin (2008)

Journal of the European Mathematical Society

It was shown in [2] that a Langevin process can be reflected at an energy absorbing boundary. Here, we establish that the law of this reflecting process can be characterized as the unique weak solution to a certain second order stochastic differential equation with constraints, which is in sharp contrast with a deterministic analog.

A second-order stochastic dominance portfolio efficiency measure

Miloš Kopa, Petr Chovanec (2008)

Kybernetika

In this paper, we introduce a new linear programming second-order stochastic dominance (SSD) portfolio efficiency test for portfolios with scenario approach for distribution of outcomes and a new SSD portfolio inefficiency measure. The test utilizes the relationship between CVaR and dual second-order stochastic dominance, and contrary to tests in Post [Post] and Kuosmanen [Kuosmanen], our test detects a dominating portfolio which is SSD efficient. We derive also a necessary condition for SSD efficiency...

A sharp analysis on the asymptotic behavior of the Durbin–Watson statistic for the first-order autoregressive process

Bernard Bercu, Frédéric Proïa (2013)

ESAIM: Probability and Statistics

The purpose of this paper is to provide a sharp analysis on the asymptotic behavior of the Durbin–Watson statistic. We focus our attention on the first-order autoregressive process where the driven noise is also given by a first-order autoregressive process. We establish the almost sure convergence and the asymptotic normality for both the least squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation estimator associated with the driven noise....

A sharp maximal inequality for continuous martingales and their differential subordinates

Adam Osękowski (2013)

Czechoslovak Mathematical Journal

Assume that X , Y are continuous-path martingales taking values in ν , ν 1 , such that Y is differentially subordinate to X . The paper contains the proof of the maximal inequality sup t 0 | Y t | 1 2 sup t 0 | X t | 1 . The constant 2 is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s method and rests on the construction of an appropriate special function.

Currently displaying 621 – 640 of 10046