A resummed branching process representation for a class of nonlinear ODEs.
This essay outlines a generalized Riemann approach to the analysis of random variation and illustrates it by a construction of Brownian motion in a new and simple manner.
The classical quantile approximation for the sample mean, based on the central limit theorem, has been proved to fail when the sample size is small and we approach the tail of the distribution. In this paper we will develop a second order approximation formula for the quantile which improves the classical one under heavy tails underlying distributions, and performs very accurately in the upper tail of the distribution even for relatively small samples.
It was shown in [2] that a Langevin process can be reflected at an energy absorbing boundary. Here, we establish that the law of this reflecting process can be characterized as the unique weak solution to a certain second order stochastic differential equation with constraints, which is in sharp contrast with a deterministic analog.
In this paper, we introduce a new linear programming second-order stochastic dominance (SSD) portfolio efficiency test for portfolios with scenario approach for distribution of outcomes and a new SSD portfolio inefficiency measure. The test utilizes the relationship between CVaR and dual second-order stochastic dominance, and contrary to tests in Post [Post] and Kuosmanen [Kuosmanen], our test detects a dominating portfolio which is SSD efficient. We derive also a necessary condition for SSD efficiency...
The purpose of this paper is to provide a sharp analysis on the asymptotic behavior of the Durbin–Watson statistic. We focus our attention on the first-order autoregressive process where the driven noise is also given by a first-order autoregressive process. We establish the almost sure convergence and the asymptotic normality for both the least squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation estimator associated with the driven noise....
Assume that , are continuous-path martingales taking values in , , such that is differentially subordinate to . The paper contains the proof of the maximal inequality The constant is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s method and rests on the construction of an appropriate special function.