Displaying 761 – 780 of 10046

Showing per page

A versatile scheme for predicting renewal times

Gusztáv Morvai, Benjamin Weiss (2016)

Kybernetika

There are two kinds of universal schemes for estimating residual waiting times, those where the error tends to zero almost surely and those where the error tends to zero in some integral norm. Usually these schemes are different because different methods are used to prove their consistency. In this note we will give a single scheme where the average error is eventually small for all time instants, while the error itself tends to zero along a sequence of stopping times of density one.

A version of the law of large numbers

Katusi Fukuyama (2001)

Colloquium Mathematicae

By the method of Rio [10], for a locally square integrable periodic function f, we prove ( f ( μ t x ) + . . . + f ( μ t x ) ) / n 0 1 f for almost every x and t > 0.

A Weak-Type Inequality for Orthogonal Submartingales and Subharmonic Functions

Adam Osękowski (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Let X be a submartingale starting from 0, and Y be a semimartingale which is orthogonal and strongly differentially subordinate to X. The paper contains the proof of the sharp estimate ( s u p t 0 | Y t | 1 ) 3 . 375 . . . X . As an application, a related weak-type inequality for smooth functions on Euclidean domains is established.

A Weak-Type Inequality for Submartingales and Itô Processes

Adam Osękowski (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

Let α ∈ [0,1] be a fixed parameter. We show that for any nonnegative submartingale X and any semimartingale Y which is α-subordinate to X, we have the sharp estimate Y W ( 2 ( α + 1 ) ² ) / ( 2 α + 1 ) X L . Here W is the weak- L space introduced by Bennett, DeVore and Sharpley. The inequality is already sharp in the context of α-subordinate Itô processes.

A weighted empirical interpolation method: a priori convergence analysis and applications

Peng Chen, Alfio Quarteroni, Gianluigi Rozza (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We extend the classical empirical interpolation method [M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Compt. Rend. Math. Anal. Num. 339 (2004) 667–672] to a weighted empirical interpolation method in order to approximate nonlinear parametric functions with weighted parameters, e.g. random variables obeying various probability distributions. A priori convergence analysis...

A weighted version of Gamma distribution

Kanchan Jain, Neetu Singla, Rameshwar D. Gupta (2014)

Discussiones Mathematicae Probability and Statistics

Weighted Gamma (WG), a weighted version of Gamma distribution, is introduced. The hazard function is increasing or upside-down bathtub depending upon the values of the parameters. This distribution can be obtained as a hidden upper truncation model. The expressions for the moment generating function and the moments are given. The non-linear equations for finding maximum likelihood estimators (MLEs) of parameters are provided and MLEs have been computed through simulations and also for a real data...

A well-posedness result for a mass conserved Allen-Cahn equation with nonlinear diffusion

Kettani, Perla El, Hilhorst, Danielle, Lee, Kai (2017)

Proceedings of Equadiff 14

In this paper, we prove the existence and uniqueness of the solution of the initial boundary value problem for a stochastic mass conserved Allen-Cahn equation with nonlinear diffusion together with a homogeneous Neumann boundary condition in an open bounded domain of n with a smooth boundary. We suppose that the additive noise is induced by a Q-Brownian motion.

Abel means of operator-valued processes

G. Blower (1995)

Studia Mathematica

Let ( X j ) be a sequence of independent identically distributed random operators on a Banach space. We obtain necessary and sufficient conditions for the Abel means of X n . . . X 2 X 1 to belong to Hardy and Lipschitz spaces a.s. We also obtain necessary and sufficient conditions on the Fourier coefficients of random Taylor series with bounded martingale coefficients to belong to Lipschitz and Bergman spaces.

Currently displaying 761 – 780 of 10046