Accès non uniformément répartis dans une base de données : approche probabiliste et modélisation
This article describes an accurate procedure for computing the mean first passage times of a finite irreducible Markov chain and a Markov renewal process. The method is a refinement to the Kohlas, Zeit fur Oper Res, 30, 197–207, (1986) procedure. The technique is numerically stable in that it doesn’t involve subtractions. Algebraic expressions for the special cases of one, two, three and four states are derived.Aconsequence of the procedure is that the stationary distribution of the embedded Markov...
We study actuarial methods of option pricing in a fractional Black-Scholes model with time-dependent volatility. We interpret the option as a potential loss and we show that the fair premium needed to insure this loss coincides with the expectation of the discounted claim payoff under the average risk neutral measure.
We study the adaptive control problem for discrete-time Markov control processes with Borel state and action spaces and possibly unbounded one-stage costs. The processes are given by recurrent equations with i.i.d. -valued random vectors whose density is unknown. Assuming observability of we propose the procedure of statistical estimation of that allows us to prove discounted asymptotic optimality of two types of adaptive policies used early for the processes with bounded costs.
Assume that (Xt)t∈Z is a real valued time series admitting a common marginal density f with respect to Lebesgue's measure. [Donoho et al. Ann. Stat.24 (1996) 508–539] propose near-minimax estimators based on thresholding wavelets to estimate f on a compact set in an independent and identically distributed setting. The aim of the present work is to extend these results to general weak dependent contexts. Weak dependence assumptions are expressed as decreasing bounds of covariance terms and are...
The biological theory of adaptive dynamics proposes a description of the long-time evolution of an asexual population, based on the assumptions of large population, rare mutations and small mutation steps. Under these assumptions, the evolution of a quantitative dominant trait in an isolated population is described by a deterministic differential equation called 'canonical equation of adaptive dynamics'. In this work, in order to include the effect of genetic drift in this model, we consider instead...
We consider the problem of estimating the integral of the square of a density from the observation of a sample. Our method to estimate is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for -statistics of order 2 due to Houdré and Reynaud.
We consider the problem of estimating the integral of the square of a density f from the observation of a n sample. Our method to estimate is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for U-statistics of order 2 due to Houdré and Reynaud.
We propose in this work an original estimator of the conditional intensity of a marker-dependent counting process, that is, a counting process with covariates. We use model selection methods and provide a nonasymptotic bound for the risk of our estimator on a compact set. We show that our estimator reaches automatically a convergence rate over a functional class with a given (unknown) anisotropic regularity. Then, we prove a lower bound which establishes that this rate is optimal. Lastly, we provide...
In a convolution model, we observe random variables whose distribution is the convolution of some unknown density f and some known noise density g. We assume that g is polynomially smooth. We provide goodness-of-fit testing procedures for the test H0: f=f0, where the alternative H1is expressed with respect to -norm (i.e. has the form ). Our procedure is adaptive with respect to the unknown smoothness parameterτ of f. Different testing rates (ψn) are obtained according to whether f0 is polynomially...
A number of regularization methods for discrete inverse problems consist in considering weighted versions of the usual least square solution. These filter methods are generally restricted to monotonic transformations, e.g. the Tikhonov regularization or the spectral cut-off. However, in several cases, non-monotonic sequences of filters may appear more appropriate. In this paper, we study a hard-thresholding regularization method that extends the spectral cut-off procedure to non-monotonic sequences....
We study nonparametric estimation of the diffusion coefficient from discrete data, when the observations are blurred by additional noise. Such issues have been developed over the last 10 years in several application fields and in particular in high frequency financial data modelling, however mainly from a parametric and semiparametric point of view. This paper addresses the nonparametric estimation of the path of the (possibly stochastic) diffusion coefficient in a relatively general setting. By...