Displaying 861 – 880 of 10054

Showing per page

Almost sure asymptotic behaviour of the r -neighbourhood surface area of Brownian paths

Ondřej Honzl, Jan Rataj (2012)

Czechoslovak Mathematical Journal

We show that whenever the q -dimensional Minkowski content of a subset A d exists and is finite and positive, then the “S-content” defined analogously as the Minkowski content, but with volume replaced by surface area, exists as well and equals the Minkowski content. As a corollary, we obtain the almost sure asymptotic behaviour of the surface area of the Wiener sausage in d , d 3 .

Almost sure functional central limit theorem for ballistic random walk in random environment

Firas Rassoul-Agha, Timo Seppäläinen (2009)

Annales de l'I.H.P. Probabilités et statistiques

We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.

Almost sure limit theorems for dependent random variables

Michał Seweryn (2010)

Banach Center Publications

For a sequence of dependent random variables ( X k ) k we consider a large class of summability methods defined by R. Jajte in [jaj] as follows: For a pair of real-valued nonnegative functions g,h: ℝ⁺ → ℝ⁺ we define a sequence of “weighted averages” 1 / g ( n ) k = 1 n ( X k ) / h ( k ) , where g and h satisfy some mild conditions. We investigate the almost sure behavior of such transformations. We also take a close look at the connection between the method of summation (that is the pair of functions (g,h)) and the coefficients that measure...

Almost sure properties of controlled diffusions and worst case properties of deterministic systems

Martino Bardi, Annalisa Cesaroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We compare a general controlled diffusion process with a deterministic system where a second controller drives the disturbance against the first controller. We show that the two models are equivalent with respect to two properties: the viability (or controlled invariance, or weak invariance) of closed smooth sets, and the existence of a smooth control Lyapunov function ensuring the stabilizability of the system at an equilibrium.


Currently displaying 861 – 880 of 10054