Almost sure central limit theorem for a nonstationary Gaussian sequence.
We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.
We prove an almost sure functional limit theorem for the product of partial sums of i.i.d. positive random variables with finite second moment.
For a sequence of dependent random variables we consider a large class of summability methods defined by R. Jajte in [jaj] as follows: For a pair of real-valued nonnegative functions g,h: ℝ⁺ → ℝ⁺ we define a sequence of “weighted averages” , where g and h satisfy some mild conditions. We investigate the almost sure behavior of such transformations. We also take a close look at the connection between the method of summation (that is the pair of functions (g,h)) and the coefficients that measure...
We compare a general controlled diffusion process with a deterministic system where a second controller drives the disturbance against the first controller. We show that the two models are equivalent with respect to two properties: the viability (or controlled invariance, or weak invariance) of closed smooth sets, and the existence of a smooth control Lyapunov function ensuring the stabilizability of the system at an equilibrium.
We study the generalized random Fibonacci sequences defined by their first non-negative terms and for n≥1, Fn+2=λFn+1±Fn (linear case) and ̃Fn+2=|λ̃Fn+1±̃Fn| (non-linear case), where each ± sign is independent and either + with probability p or − with probability 1−p (0<p≤1). Our main result is that, when λ is of the form λk=2cos(π/k) for some integer k≥3, the exponential growth of Fn for 0<p≤1, and of ̃Fn for 1/k<p≤1, is almost surely positive and given by ∫0∞log x dνk, ρ(x),...