On the relation between Gaussian measures and convolution semigroups of local type.
If is a sequence of real numbers which is good for the ergodic theorem, is the sequence of the integer parts good for the ergodic theorem ? The answer is negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.
A description of the short time behavior of solutions of the Allen–Cahn equation with a smoothened additive noise is presented. The key result is that in the sharp interface limit solutions move according to motion by mean curvature with an additional stochastic forcing. This extends a similar result of Funaki [Acta Math. Sin (Engl. Ser.)15 (1999) 407–438] in spatial dimension n=2 to arbitrary dimensions.