The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
402
We revisit Sklar’s Theorem and give another proof, primarily based on the use of right quantile functions. To this end we slightly generalise the distributional transform approach of Rüschendorf and facilitate some new results including a rigorous characterisation of an almost surely existing “left-invertibility” of distribution functions.
The distribution of product of two normally distributed variables come from the first part of the XX Century. First works about this issue were [1] and [2] showed that under certain conditions the product could be considered as a normally distributed.
A more recent approach is [3] that studied approximation to density function of the product using three methods: numerical integration, Monte Carlo simulation and analytical approximation to the result using the normal distribution....
Dans cet article, on traite un échantillon d'angles de droits et de revers de pièces de monnaies. On a cherché à en donner une description statistique correcte et à ajuster une loi théorique puis à construire un test d'homogénéité non paramétrique de deux échantillons distribués sur le cercle.
An example of a normal nonlinear continuous function of a normal random variable is given. Also the Cauchy case is considered.
We complement the recently introduced classes of lower and upper semilinear copulas by two new classes, called vertical and horizontal semilinear copulas, and characterize the corresponding class of diagonals. The new copulas are in essence asymmetric, with maximum asymmetry given by . The only symmetric members turn out to be also lower and upper semilinear copulas, namely convex sums of and .
Algebraic bounds of Fréchet classes of copulas can be derived from the fundamental attributes of the associated copulas. A minimal system of algebraic bounds and related basic bounds can be defined using properties of pointed convex polyhedral cones and their relationship with non-negative solutions of systems of linear homogeneous Diophantine equations, largely studied in Combinatorics. The basic bounds are an algebraic improving of the Fréchet-Hoeffding bounds. We provide conditions of compatibility...
The present paper is related to the study of asymmetry for copulas by introducing functionals based on different norms for continuous variables. In particular, we discuss some facts concerning asymmetry and we point out some flaws occurring in the recent literature dealing with this matter.
The present paper introduces a group of transformations on the collection of all bivariate copulas. This group contains an involution which is particularly useful since it provides (1) a criterion under which a given symmetric copula can be transformed into an asymmetric one and (2) a condition under which for a given copula the value of every measure of concordance is equal to zero. The group also contains a subgroup which is of particular interest since its four elements preserve symmetry, the...
The bivariate negative binomial distribution is introduced using the Marshall-Olkin type bivariate geometrical distribution. It is used to the estimation of the distribution of the number of accidents in standard data.
Currently displaying 41 –
60 of
402