The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 30 of 30

Showing per page

Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales

Adam Osękowski (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Assume that u, v are conjugate harmonic functions on the unit disc of ℂ, normalized so that u(0) = v(0) = 0. Let u*, |v|* stand for the one- and two-sided Brownian maxima of u and v, respectively. The paper contains the proof of the sharp weak-type estimate ℙ(|v|* ≥ 1)≤ (1 + 1/3² + 1/5² + 1/7² + ...)/(1 - 1/3² + 1/5² - 1/7² + ...) 𝔼u*. Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined...

Currently displaying 21 – 30 of 30

Previous Page 2