The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Penultimate approximation for the distribution of the excesses

Rym Worms (2002)

ESAIM: Probability and Statistics

Let F be a distribution function (d.f) in the domain of attraction of an extreme value distribution H γ ; it is well-known that F u ( x ) , where F u is the d.f of the excesses over u , converges, when u tends to s + ( F ) , the end-point of F , to G γ ( x σ ( u ) ) , where G γ is the d.f. of the Generalized Pareto Distribution. We provide conditions that ensure that there exists, for γ > - 1 , a function Λ which verifies lim u s + ( F ) Λ ( u ) = γ and is such that Δ ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ Λ ( u ) ( x / σ ( u ) ) | converges to 0 faster than d ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ γ ( x / σ ( u ) ) | .

Penultimate approximation for the distribution of the excesses

Rym Worms (2010)

ESAIM: Probability and Statistics

Let F be a distribution function (d.f) in the domain of attraction of an extreme value distribution H γ ; it is well-known that Fu(x), where Fu is the d.f of the excesses over u, converges, when u tends to s+(F), the end-point of F, to G γ ( x σ ( u ) ) , where G γ is the d.f. of the Generalized Pareto Distribution. We provide conditions that ensure that there exists, for γ > - 1 , a function Λ which verifies lim u s + ( F ) Λ ( u ) = γ and is such that Δ ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ Λ ( u ) ( x / σ ( u ) ) | converges to 0 faster than d ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ γ ( x / σ ( u ) ) | .

Currently displaying 1 – 3 of 3

Page 1