The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this note we prove that the local martingale part of a convex function f of a d-dimensional semimartingale X = M + A can be written in terms of an Itô stochastic integral ∫H(X)dM, where H(x) is some particular measurable choice of subgradient ∇ f ( x ) off at x, and M is the martingale part of X. This result was first proved by Bouleau in [N. Bouleau, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 87–90]. Here we present a new treatment of the problem. We first prove the result for x10ff65;...
We analyze the set-valued stochastic integral equations driven by continuous semimartingales and prove the existence and uniqueness of solutions to such equations in the framework of the hyperspace of nonempty, bounded, convex and closed subsets of the Hilbert space L2 (consisting of square integrable random vectors). The coefficients of the equations are assumed to satisfy the Osgood type condition that is a generalization of the Lipschitz condition. Continuous dependence of solutions with respect...
We present the concepts of set-valued stochastic integrals in a plane and prove the existence of a solution to stochastic integral inclusions of the form
The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.
Currently displaying 1 –
20 of
79