The search session has expired. Please query the service again.
The problem of completeness of the forward rate based bond market model driven by a Lévy process under the physical measure is examined. The incompleteness of market in the case when the Lévy measure has a density function is shown. The required elements of the theory of stochastic integration over the compensated jump measure under a martingale measure are presented and the corresponding integral representation of local martingales is proven.
We define a stochastic anticipating integral δμ with respect to Brownian motion, associated to a non adapted increasing process (μt), with dual projection t. The integral δμ(u) of an anticipating process (ut) satisfies: for every bounded predictable process ft,E [ (∫ fsdBs ) δμ(u) ] = E [ ∫ fsusdμs ].We characterize this integral when μt = supt ≤s ≤ 1 Bs. The proof relies on a path decomposition of Brownian motion up to time 1.
Motivated by the well-posedness of birth-and-growth processes, a stochastic geometric differential equation and, hence, a stochastic geometric dynamical system are proposed. In fact, a birth-and-growth process can be rigorously modeled as a suitable combination, involving the Minkowski sum and the Aumann integral, of two very general set-valued processes representing nucleation and growth dynamics, respectively. The simplicity of the proposed geometric approach allows to avoid problems of boundary...
Motivated by the well-posedness of birth-and-growth processes, a stochastic geometric differential equation and, hence, a stochastic geometric dynamical system are proposed. In fact, a birth-and-growth process can be rigorously modeled as a suitable combination, involving the Minkowski sum and the Aumann integral, of two very general set-valued processes representing nucleation and growth dynamics, respectively. The simplicity of the proposed geometric approach allows to avoid problems of boundary...
Currently displaying 1 –
20 of
25