The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A two dimensional stochastic differential equation is suggested as a stochastic model for the Kermack–McKendrick epidemics. Its strong (weak) existence and uniqueness and absorption properties are investigated. The examples presented in Section 5 are meant to illustrate possible different asymptotics of a solution to the equation.
We compare a general controlled diffusion process with a deterministic system
where a second controller drives the disturbance against the first
controller. We show that the two models are equivalent with
respect to two properties: the viability (or controlled
invariance, or weak invariance) of closed smooth sets, and the
existence of a smooth control Lyapunov function ensuring the
stabilizability of the system at an equilibrium.
Currently displaying 41 –
60 of
80